当前位置: 首页 » 综合知识 » it知识 » 正文

怎么用python获取最优轮廓系数

发布时间:2023-07-25 以下文章来源于网友投稿,内容仅供参考!

1、通过设置不同的k值来测试和计算轮廓系数,可以获得最佳k值对应的最佳轮廓系数。

2、也可以绘图观察和选择最高。但为了防止拟合现象,也可以通过手肘选择最佳k值。

实例

from sklearn.cluster import KMeans
from sklearn.preprocessing import MaxAbsScaler  # 小数定标标准化
from sklearn.preprocessing import MinMaxScaler  # 离差标准化
from sklearn.preprocessing import StandardScaler  # 标准差标准化
# 评估指标-----轮廓系数
from sklearn.metrics import silhouetee_score
 
# 由于是聚类算法,数据可能存在量纲,需要标准化,在使用算法之前
# 实例化
sca = MaxAbsScaler()
sca = MinMaxScaler()
sca = StandardScaler()
# 拟合
sca.fit( 训练集特征 )
# 处理数据
X_train = sca.transform( 训练集特征 )
 
 
# 实例化
km = KMeans()
# 参数:
# n_clusters=3,表示k=3,也就是随机三个聚类中心,最小值是2
# init,聚类中心初始化方法,默认k-means++
# max_iter,迭代次数,默认300,如果后期无法收敛可以尝试增加迭代次数
# random_state=1,随机种子,默认是None
 
# 拟合
km.fit( 训练集特征 )
 
# 查看聚类中心
print('聚类中心:', km.cluster_centers_)
 
# 查看预测结果
# 可以直接传入训练集,也可以传入自定义二维数组
y_pred = km.predict( 训练集特征 )
print('整个数据的类别:', y_pred)
 
# 查看SSE---误差平方和
# 默认是取反操作,大多数情况得出来的是负值【-inf, 0】
# 绝对值越小越好
score = km.score(X_train, y_pred)
print('SSE', score)
 
# 评估指标----轮廓系数(-1, 1),越大越好
print('轮廓系数:', silhouetee_score(X_train, y_pred))
  • • Linux Ecdsa密钥长度选择有何依据

    在Linux

  • • Linux Khook在内核监控中的应用如何

    Linux

  • • Linux Gsoap是否支持异步通信

    GSOAP是

  • • Linux Coremail如何提升用户体验

    提升Linu

  • • Linux Ecdsa算法有哪些局限性

    ECDSA

  • 哎呀音乐钢琴键盘学习《 钢琴主人训练营》 西瓜学琴
    郭蝈 陪练钢琴 30节课时 考级刚需 让孩子每一次练琴都是高质量的
    30天轻松学会五线谱 流行钢琴自学初级教程 牙牙学琴
    流行爵士钢琴实战技巧VIP课 - 继伟 哎呀音乐
    【海上钢琴师】原版 MT1990钢琴谱
    百首经典流行钢琴实战曲集 - 继伟
    雷费尔德电钢琴重锤88键专业考级儿童初学者数码电子钢琴家用
    小练咖 真人钢琴陪练 1v1服务 2999随时退 1课时50分钟 考级刚需
    雅马哈电钢琴88键重锤CLP735智能数码电子钢琴家用专业初学者考级
    【原装进口】Yamaha/雅马哈钢琴 b121 SC2原声静音钢琴
  • 珠海专业调钢琴
  • 天津宝坻区调钢琴
  • 天津静海区钢琴调音
  • 成都简阳市钢琴调律
  • 大连瓦房店市钢琴调音
  • 眉山调钢琴联系方式
  • 惠州大亚湾钢琴调琴师
  • 长治调琴师
  • 厦门湖里区钢琴调音师
  • 上海普陀区钢琴调音师