当前位置: 首页 » 综合知识 » it知识 » 正文

如何使用Python创建一个瀑布图

发布时间:2023-07-20 以下文章来源于网友投稿,内容仅供参考!

创建图表

首先,执行标准的输入,并确保IPython能显示matplot图。

import numpy as np import pandas as pd import matplotlib.pyplot as plt
%matplotlib inline

设置我们想画出瀑布图的数据,并将其加载到数据帧(DataFrame)中。

数据需要以你的起始值开始,但是你需要给出最终的总数。我们将在下面计算它。

index = ['sales','returns','credit fees','rebates','late charges','shipping'] data = {'amount': [350000,-30000,-7500,-25000,95000,-7000]} trans = pd.DataFrame(data=data,index=index)

我使用了IPython中便捷的display函数来更简单地控制我要显示的内容。

  1. from IPython.display import display 

  2. display(trans)

首先,我们得到累积和。

display(trans.amount.cumsum())  sales 350000  returns 320000  credit fees 312500  rebates 287500  late charges 382500  shipping 375500  Name: amount, dtype: int64

这看起来不错,但我们需要将一个地方的数据转移到右边。

  1. blank=trans.amount.cumsum().shift(1).fillna(0) 

  2.  

  3. display(blank)

sales 0  returns 350000  credit fees 320000  rebates 312500  late charges 287500  shipping 382500  Name: amount, dtype: float64

我们需要向trans和blank数据帧中添加一个净总量。

total = trans.sum().amount  trans.loc["net"] = total  blank.loc["net"] = total  display(trans)  display(blank)
sales 0  returns 350000  credit fees 320000  rebates 312500  late charges 287500  shipping 382500  net 375500  Name: amount, dtype: float64

创建我们用来显示变化的步骤。

  1. step = blank.reset_index(drop=True).repeat(3).shift(-1) 

  2.  

  3. step[1::3] = np.nan 

  4.  

  5. display(step)

0 0  0 NaN  0 350000  1 350000  1 NaN  1 320000  2 320000  2 NaN  2 312500  3 312500  3 NaN  3 287500  4 287500  4 NaN  4 382500  5 382500  5 NaN  5 375500  6 375500  6 NaN  6 NaN  Name: amount, dtype: float64

对于“net”行,为了不使堆叠加倍,我们需要确保blank值为0。

blank.loc["net"] = 0

然后,将其画图,看一下什么样子。

  1. my_plot = trans.plot(kind='bar', stacked=True, bottom=blank,legend=None, title="2022 Sales Waterfall") 

  2. my_plot.plot(step.index, step.values,'k')

看起来相当不错,但是让我们试着格式化Y轴,以使其更具有可读性。为此,我们使用FuncFormatter和一些Python2.7+的语法来截断小数并向格式中添加一个逗号。

  1. def money(x, pos): 

  2.  

  3. 'The two args are the value and tick position' 

  4.  

  5. return "${:,.0f}".format(x)

from matplotlib.ticker import FuncFormatter formatter = FuncFormatter(money)

然后,将其组合在一起。

  1. my_plot = trans.plot(kind='bar', stacked=True, bottom=blank,legend=None, title="2022 Sales Waterfall") 

  2.  

  3. my_plot.plot(step.index, step.values,'k') 

  4.  

  5. my_plot.set_xlabel("Transaction Types") 

  6.  

  7. my_plot.yaxis.set_major_formatter(formatter)

完整脚本

基本图形能够正常工作,但是我想添加一些标签,并做一些小的格式修改。下面是我最终的脚本:

import numpy as np  import pandas as pd  import matplotlib.pyplot as plt  from matplotlib.ticker import FuncFormatter     #Use python 2.7+ syntax to format currency  def money(x, pos):  'The two args are the value and tick position'  return "${:,.0f}".format(x)  formatter = FuncFormatter(money)     #Data to plot. Do not include a total, it will be calculated  index = ['sales','returns','credit fees','rebates','late charges','shipping']  data = {'amount': [350000,-30000,-7500,-25000,95000,-7000]}     #Store data and create a blank series to use for the waterfall  trans = pd.DataFrame(data=data,index=index)  blank = trans.amount.cumsum().shift(1).fillna(0)     #Get the net total number for the final element in the waterfall  total = trans.sum().amount  trans.loc["net"]= total  blank.loc["net"] = total     #The steps graphically show the levels as well as used for label placement  step = blank.reset_index(drop=True).repeat(3).shift(-1)  step[1::3] = np.nan     #When plotting the last element, we want to show the full bar,  #Set the blank to 0  blank.loc["net"] = 0     #Plot and label  my_plot = trans.plot(kind='bar', stacked=True, bottom=blank,legend=None, figsize=(10, 5), title="2022 Sales Waterfall")  my_plot.plot(step.index, step.values,'k')  my_plot.set_xlabel("Transaction Types")     #Format the axis for dollars  my_plot.yaxis.set_major_formatter(formatter)     #Get the y-axis position for the labels  y_height = trans.amount.cumsum().shift(1).fillna(0)     #Get an offset so labels don't sit right on top of the bar  max = trans.max()  neg_offset = max / 25  pos_offset = max / 50  plot_offset = int(max / 15)     #Start label loop  loop = 0  for index, row in trans.iterrows():  # For the last item in the list, we don't want to double count  if row['amount'] == total:  y = y_height[loop]  else:  y = y_height[loop] + row['amount']  # Determine if we want a neg or pos offset if row['amount'] > 0:  y += pos_offset  else:  y -= neg_offset  my_plot.annotate("{:,.0f}".format(row['amount']),(loop,y),ha="center")  loop+=1     #Scale up the y axis so there is room for the labels  my_plot.set_ylim(0,blank.max()+int(plot_offset))  #Rotate the labels  my_plot.set_xticklabels(trans.index,rotation=0)  my_plot.get_figure().savefig("waterfall.png",dpi=200,bbox_inches='tight')
  • • Linux Ecdsa密钥长度选择有何依据

    在Linux

  • • Linux Khook在内核监控中的应用如何

    Linux

  • • Linux Gsoap是否支持异步通信

    GSOAP是

  • • Linux Coremail如何提升用户体验

    提升Linu

  • • Linux Ecdsa算法有哪些局限性

    ECDSA

  • 哎呀音乐钢琴键盘学习《 钢琴主人训练营》 西瓜学琴
    郭蝈 陪练钢琴 30节课时 考级刚需 让孩子每一次练琴都是高质量的
    30天轻松学会五线谱 流行钢琴自学初级教程 牙牙学琴
    流行爵士钢琴实战技巧VIP课 - 继伟 哎呀音乐
    【海上钢琴师】原版 MT1990钢琴谱
    百首经典流行钢琴实战曲集 - 继伟
    雷费尔德电钢琴重锤88键专业考级儿童初学者数码电子钢琴家用
    小练咖 真人钢琴陪练 1v1服务 2999随时退 1课时50分钟 考级刚需
    雅马哈电钢琴88键重锤CLP735智能数码电子钢琴家用专业初学者考级
    【原装进口】Yamaha/雅马哈钢琴 b121 SC2原声静音钢琴
  • 珠海专业调钢琴
  • 天津宝坻区调钢琴
  • 天津静海区钢琴调音
  • 成都简阳市钢琴调律
  • 大连瓦房店市钢琴调音
  • 眉山调钢琴联系方式
  • 惠州大亚湾钢琴调琴师
  • 长治调琴师
  • 厦门湖里区钢琴调音师
  • 上海普陀区钢琴调音师