1、二分法说明
二分法的核心思想就是索引的移动,查找速度是几何级递增的。
二分查找法,返回查找到数组元素的索引,如果找不到返回-1
2、实例
二分法定位参数值在数组中的位置
场景描述:
根据一个参数值找到它在数组内的下标区间,例如: 2在数组{0,1,3,5}的区间为{1,2}
package .study.collection;
import java.util.Arrays;
/**
* @auth zhangmj
* @date 2022/2/12 9:14
*/
public class ExampleList<T> {
public static void main(String[] args) {
int[] intArray = {0,1,2,10,15,20,25,29,31,36,39,40,42,43,46,50,55,60,63,66,70};
int num =2;
int[] resultArray = getPostionByTwoPoint(intArray, num);
System.out.println(Arrays.toString(resultArray));
}
private static int[] getPostionByTwoPoint(int[] intArray, int num) {
// 判断
if(intArray == null || intArray.length == 0){
throw new RuntimeException("数组不能为空");
}
// 定义最小和区间
if(intArray[0] > num || intArray[intArray.length - 1] < num){
throw new RuntimeException("不在数组范围之内");
}
int middle = 0;
int low = 0;
int high = intArray.length - 1;
// 定义首尾特殊的情况
if(intArray[low] == num){
int[] resultArray = {low, low};
return resultArray;
}else if(intArray[high] == num){
int[] resultArray = {high, high};
return resultArray;
}
int i = 1;
// 数在中间的情况
while(low < high){
System.out.println("查找第 " + i + " 次");
middle = (low + high + 1)/2;
if(intArray[middle] == num){
int[] resultArray = {middle, middle};
return resultArray;
}else if(intArray[middle] > num){
// num 在 low 和 middle 之间
int previous = middle - 1;
if(previous > low && intArray[previous] < num){
int[] resultArray = {previous, middle};
return resultArray;
}
high = middle;
}else if(intArray[middle] < num){
int latter = middle + 1;
if(latter < high && intArray[latter] > num){
int[] resultArray = {middle, latter};
return resultArray;
}
low = middle;
}
i++;
}
throw new RuntimeException("定位异常");
}
}








